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Abstract— Visual target navigation is a critical task within
the realm of embodied intelligence. The Existing end-to-end and
modular approaches often encounter high computational de-
mands, challenges in online updates, and limited generalization,
which restrict their deployment on resource-constrained de-
vices. To overcome these challenges, we introduce a knowledge-
driven, lightweight image instance navigation framework, Dual
Graph Navigation (DGN). The DGN constructs an External
Knowledge Graph (EKG) using a limited dataset to cap-
ture prior correlation possibilities between objects, guiding
the exploration process. During exploration, DGN builds an
Internal Knowledge Graph (IKG) from an instance-aware
module, recording explored regions and integrating with EKG
to determine the next navigation target. The EKG is dy-
namically updated based on IKG, continually enhancing the
system’s adaptability to the current environment. Additionally,
DGN’s plug-and-play modular design supports independent
training and flexible replacement of target recognition, keypoint
extraction, and path planning algorithms, reducing training and
deployment costs while improving adaptability across diverse
environments. We deploy DGN on three types of real-world
robot platforms (including edge

without CUDA support) and simulation environments
(AI2THOR, Habitat), and our experimental results demonstrate
that it operates stably, achieving state-of-the-art performance
on the ProcTHOR-10K dataset.

I. INTRODUCTION

Visual navigation in unknown environments is a core
challenge in the field of embodied intelligence, requiring
robots to possess both scene understanding and autonomous
navigation capabilities [1], [2]. Complex indoor environ-
ments impose strict requirements on a robot’s real-time
navigation abilities [3]. However, the existing approaches
often need to be trained in specific environments and rely
on high-performance GPU workstations to ensure real-time
inference [4], [5]. High training costs and limited generaliza-
tion capabilities of these approaches restrict their application
in real-world scenarios. [6], [7], [8], [9]. Thus, it is crucial to
develop algorithms that can operate efficiently on resource-
constrained platforms while maintaining strong generaliza-
tion capabilities [5], [10], [11].

Visual navigation approaches can be categorized into
end-to-end [12], [13], [14], [15], [16] and modular ap-
proaches [17], [18], [19]. Both types of approaches typi-
cally have high computational complexity,making it difficult
to deploy on resource-constrained devices. The end-to-end
approaches based on reinforcement learning, map obser-
vations to actions through continuous interaction between
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the agent and the environment [20], but suffer from poor
transferability [13], [21], sparse rewards, and high data
dependency [22], [23], [24], [25]. The language-driven end-
to-end navigation approaches use cross-modal models to aid
navigation and improve generalization [16], [26], [27], [28].
But their large number of parameters results in high demands
for computational and memory bandwidth, setting challenges
for real-time operation on resource-constrained devices. [29].
Modular approaches, decompose tasks into specific subtasks
realized by functional modules [30], [31], enabling high
sample efficiency and stability [32], [33], [34], but they often
depend on metric maps with semantic information, which are
costly to construct and expand and require precise data and
strict scene structure [13], [31].

To address the aforementioned issues, we propose a
knowledge-driven lightweight image instance navigation
framework, the Dual Graph Navigation (DGN), as illustrated
in Fig. 1.The DGN leverages an External Knowledge Graph
(EKG) and an Internal Knowledge Graph (IKG) to record
prior knowledge and environmental structure, thereby re-
ducing the dependence on precise metric information and
extensive training. The framework adopts a modular de-
sign that supports the independent training and flexible
replacement of functional modules, enhancing robustness
and enabling efficient deployment on resource-constrained
edge computing devices. Specifically,the DGN comprises
three modules: environment perception guided by knowledge
graphs, navigation decision-making, and path planning. In
the environment perception module, the EKG is constructed
from a small dataset to represent prior correlation prob-
abilities, and offer exploration prompts. The IKG is built
from instance-aware relationships formed during exploration
(Sec. III-A.2), recording explored regions and prioritizing
navigation targets while continuously updating the EKG
throughout the navigation process. This knowledge-guided
method with online updates, enhances navigation adaptability
to the current environment. The decision-making module
identifies potential targets from EKG, uses the IKG to assess
priority, and determines the goal. Finally, the DGN uses the
plug-and-play path planning module generate a trajectory,
guiding the robot to the target.

The main contributions of this paper are as follows:

e We propose a knowledge-driven, lightweight visual
instance navigation framework (DGN) that uses the
EKG and IKG to record object category correlation
and instance reachability, respectively. This method
enables visual navigation without requiring large-scale
data training or precise metric maps.

o The framework’s modular plug-and-play design allows



Language-Driven perception
Observed RGBD suag pereep
o shelf

®
Nl S

Embedding Mapping

Modular Learning perception e

Detector Mapping

Other Methods

Target Image

DGN Instance-aware
Detector eyPoint
L OEEY

Our Method

TKG  shelf| e
VA4

o+ == chairl

7/

-
~N

~———o—

Fig. 1.

High Computational Cost

Costly .
> Expand Language-Driven DGN(Our)
Planner —
& Policy Modular Learning Move Path
Storage-
e ‘Consuming W
Language-Driven & T
Modular Learning Plug and Play

Online Update

Navigation

 Efficient

\

Low-Power Device
GPU-Free Policy

Comparison between DGN and mainstream visual navigation methods. Mainstream visual navigation methods (Other methods) rely on RGBD

input or driven by language, constructing semantic maps with tightly coupled perception modules, resulting in storage-consuming deployments. Our method
(DGN) only utilizes RGBD input and constructs an Internal Knowledge Graph (IKG) using a plug-and-play instance-aware module, recording semantic
information and topological relationships of instances while dynamically updating the External Knowledge Graph (EKG) with object category correlation.
This enables efficient navigation that is deployable on low-power, low-computation edge devices.

for the flexible replacement of functional modules,
enhancing the DGN’s adaptability, scalability, and main-
tainability across diverse environments and embodi-
ments.

We evaluated the DGN in multiple mainstream simu-
lation environments, achieving state-of-the-art perfor-
mance on the ProcTHOR-10K [35] dataset. Addition-
ally, the DGN has been successfully deployed on
resource-constrained real-world robots, supporting on-
line updates.

II. RELATED WORK
A. Visual Navigation

Visual navigation [12] is a long-standing robotic task
where a robot navigate visually to locate a target or position
based on a given image. Current methods are primarily
divided into end-to-end and modular approaches. End-to-end
methods [12], [13], [14] map observations directly to actions,
offering a straightforward method but facing challenges such
as low sample efficiency and poor generalization [36]. To
address these issues, Target-driven RL [12] and ZER [13]
optimize learning strategies for better training efficiency,
while OVRL-V2 [14] and FGPrompt [22] enhance visual
representation capabilities to infer target locations better.
Recently, as language-driven models have performed well
in image perception tasks, methods like ZSON [15] and
CoW [16] have utilized CLIP [37] to obtain cross-modal
information to enhance navigation performance. Despite the
simplicity of end-to-end methods, they require massive-scale
training and implicitly learn multiple subtasks, making the
model difficult to fit and computationally burdened [32].
To break these limits, researchers comes up with mod-
ular approaches [17], [19], decomposing navigation into
specialized sub-tasks addressed by distinct modules [38].
Classic modular methods like ANS [17] and Wu et al. [18]
employ hierarchical planning, training separate modules for

environment perception, navigation planning and local navi-
gation to enhance enhancing learning capacity and efficiency.
Apart from simple module replacement, recent methods
like IEVE [19] propose a dynamic navigation method that
actively switches between different modules of exploration,
verification, and action utilization, improving the decision-
making of agent ability in complex environments. these mod-
ular approaches train the overall navigation decision module
based on reinforcement learning, leading to tight coupling
between modules. They often rely on certain functional
module models, which may lead to performance bottlenecks
and narrow the system’s optimization space. Our method
supports independent training and the seamless replacement
of different algorithms within modules, therefore extends the
functionality of agents and overcome limitations in module
selection.

B. Topological Perception

Environmental perception is essential for robotic navi-
gation, supporting decision-making, and path planning. It
can be divided into implicit, metric, and topological per-
ception [39]. Implicit perception typically relies on RNN,
LSTM, etc. to represent navigation states, which is simple
structured and has a limited long-term memory. [40]. Metric
perception provides precise localization and planning by
adopting dense maps, though it is sensitive to sensor noise
and costly to maintain [41]. Topological perception employs
graph structures to represent features and relationships, al-
lowing sparse representations while preserving long-term
exploration memory, enhancing flexibility and robustness.
Some topological approaches simplify metric perception, for
example, in NTS [42] and SPTM [43] nodes are image
features and edges are rough geometric data. Since these
methods depend on handcrafted features and spatial infor-
mation, some other approaches manage to reduce reliance
on metric information, shifting the focus instead toward
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The model receives RGBD input, with target recognition and keypoint extraction generating data to construct the IKG. The IKG then online

updates the EKG built by iTHOR. Together, the IKG and EKG determine the next navigation point, and the path planning module outputs the motion path.

emphasizing logical relationships. Neural Planner [44] and
VGM [45] construct graphs using predicted navigation posi-
tions and encoded visual features, minimizing dependence
on pose data. However, these image-level node methods
struggle to distinguish specific instances. To improve nav-
igation granularity, TSGM [39] contains image nodes rep-
resenting locations, object nodes with instances and edges
linking adjacent images and targets in current image. Most
topological methods focus on positional image data and
overlook semantic relationships of objects, putting an upper
limit on exploration efficiency. Our method addresses these
limitations by using a dual-topology structure: The IKG
for instance-level spatial representation and the EKG for
exploration guidance considering object correlation.

III. PROPOSED METHOD

To enable resource-constrained indoor robots to perform
image-based target navigation, we propose a lightweight,
modular navigation framework. The overall architecture, is
shown in Fig. 2. The DGN features a plug-and-play modular
design, enhancing adaptability across diverse environments.
Target recognition, keypoint extraction, and navigation mod-
ules can be replaced without fine-tuning. In our default
setup, we employ YOLOvVS [46] for target recognition,
SuperPoint [47] for keypoint extraction, and A-star [48] for
path planning.

A. Environmental Perception

1) Instance Recognition: DGN adopts algorithm com-
ponents of target recognition and keypoints extraction to
extract the external (F°**) and internal features (F'"?) of
target instances from the obtained RGBD data. The external
features consist of the type and distance information of
surrounding objects. The set of target nodes recognized from
the image is {v; }, where v; represents the i-th instance target,

and c; represents its category. The external feature F'¢*%(v;)
of v; is given by

Ft = 1fil1],..., fi[n]] (1)
fili] = Z d (vi, vk) (2
cr=j

where d(v;,v;) is the Euclidean distance between the ob-
served objects v; and v, and n is the number of recognizable
categories. The internal feature f!(v;) is composed of
keypoint extraction of the target image, reducing background
interference and computational overhead.

2) IKG Construction: We define the Internal Knowl-
edge Graph representing the environmental map as Gy =
(Vr, Er), where V7 is the set of target nodes, each corre-
sponding to a recognized instance, and E; is the set of edges
representing the reachability relationships between instances.
The reachability relationship weight w;; is calculated by
weighting the path length and obstacle coverage between
instances v; and v;, given by

wij :/\1 ~d(v¢,vk)+>\2-o(vi,vj) (3)

where o (v;,v;) is obtained by the ratio of the number of
obstacles between v; and v; to the path length, and A; and
Ao are weights.

For comparing the similarity of two instance nodes,
we first classify them by label, compare the similarity of
Fe*t(v;) in Euclidean distance, and then use LightGlue[49]
to compare the matching degree of F*"!(v;). This is used to
determine whether the newly recognized instance node exists
in the IKG. As shown in Fig. 2, if the new node does not exist
in the current IKG, it is added to the graph memory using the
reachability relationship. Otherwise, the information of the
matched node is updated. This IKG construction based on
reachability rather than precise spatial measurements avoids



graphing errors due to measurement errors, cuts maintenance
costs and improves extension efficiency.

3) EKG Construction: Although the layouts of indoor
environment are related to region and culture, certain uni-
versal regular patterns can provide effective exploration
prompts[50], [51]. Therefore, we use the spatial layout of
objects in 120 rooms from the iTHOR dataset to construct the
External Knowledge Graph and acquire prior commonsense
knowledge. The EKG is defined as Gg = (Vg, Eg), where
nodes Vg represent object categories, and edges Ep rep-
resent correlations between different object categories. The
probability P(c;|c;) of finding an object of category c; near
an object of category c; is calculated by
__ N(wy)

D opet NV (wir)’
where N (w;;) represents the weight of all node relations
with category ¢; and ¢; in IKG. This directed knowledge
graph is finer and more factual than the symmetric com-
monsense matrix proposed in [52], because books are likely
in a bookcase, but a book might also be on a desk or near a
pen, i.e.P (book|bookcase) > P (bookcase|book).

4) Online Update: To narrow the gap between prior
knowledge and the current environment, the DGN dynam-
ically updates prior knowledge with real-time observational
data. First, the nodes in the IKG are merged and counted
by category. Then, based on the number and weight of con-
nections between merged nodes, the correlated relationships
of different categories in the EKG are added or updated to
enhance the adaptability of system in different environments,
as shown in Fig. 2.

P(cilc)) “4)

B. Navigation Decision-Making

The key to selecting a navigation target is to prioritize
exploring areas where the target is likely to appear, rather
than traversing all areas[53]. Therefore, for a target of cate-
gory c;, the EKG first provides exploration prompts, filtering
out the instance set {v;} in the current view that exceeds
the correlation threshold 7 with the final target. Then, the
navigation priority p(v;) of these instances is evaluated by
the IKG,

p(vi) = ftarget (Ui)+fmemory(vi)+fdis(vi)+P(Ci‘cj) (5)

where fger is the target feature function, determining
whether the target is consistent with the final goal, fmemory
is the normalized value of the number of times the instance
has been observed, used to reduce the tendency to revisit
explored areas, and fy;5 is the distance between the selected
target and the robot, encouraging the robot to explore farther
areas. Finally, the node object v; with the highest navigation
priority is selected as the navigation target.

C. Path Planning

The path planning module generates a route from the
current position to the target location. Unlike tightly coupled
methods that generate only one action at a time, the DGN
generates a complete action sequence to reach the next target.

Only after the robot reaches a reachable point around the
target, a new navigation decision is made, thereby improving
decision efficiency.

IV. EXPERIMENTS AND RESULTS

In this section, we detail the results of DGN in both
simulated and real-world tests. We compare our method with
current baselines in simulation tests and conduct ablation
studies to assess the performance of DGN. Additionally,
we deploy the DGN on three robot platforms to verify its
applicability in real-world scenarios.

Evaluation Metrics: To evaluate navigation performance,
we used Success Rate (SR) and Success weighted by Path
Length (SPL), as defined in [32]. Additionally, we compared
the average time required for decision-making per step on
the same device to measure the computational performance
of the algorithm.

A. Simulation Experiment

1) Datasets: Our DGN model was trained on single-
room scenarios in iTHOR[54]. Subsequently, we evaluated
its performance using the Gibson[55] dataset within the
Habitat[56] simulator and the ProcTHOR-10K][35] dataset
in AI2THOR[54]. The physical simulation effects of these
datasets differ, making them ideal for evaluating robot per-
formance across varied environments[57]. For the Gibson
dataset, we maintained experimental settings consistent with
those in [39]. For the ProcTHOR-10K dataset, 350 scenes
were randomly selected, with each evaluated using at least
20 randomly chosen target locations.

2) Experimental Detail: In the image goal navigation
task, the starting position of robot is randomly set within the
indoor environment of the floor where the target is located,
and it needs to locate and reach the specified position in
the image. We do not use GPS, IMU, or other sensors to
obtain pose data. Instead, we rely solely on a single RGBD
image sensor with a resolution of 600 x 600 and a field of
view (FoV) of 90 degrees. This setup contrasts with the 360
degrees panoramic FoV sensors[18], [39], [42], [45] or pose
sensors[12], [17] commonly used in ImageNav tasks[12].
Although the use of these sensors simplifies localization, they
are difficult to implement on many robot platforms and sig-
nificantly increase computational costs[13]. At each timestep,
the robot takes an action within the action space A =
{MoveAhead, MoveLeft, MoveRight, RotateLeft,
RotateRight, Done}, with each move covering a distance
of 0.25m and a rotation of 90 degrees. If the robot’s number
of action steps exceeds 500 or it actively recognizes the
target, it will execute a stop command, rather than being
passively notified by the environment. A test is considered
successful if, when the robot stops, the distance to the target
is within 1m. All simulations were conducted on a machine
equipped with an Intel(R) Core(TM) i7-13700F CPU and a
GeForce RTX 3090 Ti GPU.

3) Baseline: To assess the navigation performance of our
model on evaluation datasets, we considered the following
baselines:



TABLE I

Results of Comparative Study in Gibson.

Method Perception Method No-Pose Camera SR SPL

TDVN[12] Implicit end-to-end No Single 49.3 453

OVRL-V2[14] Implicit end-to-end No Single 82.0 58.7

TSGM[39] Graph end-to-end Yes Panoramic 81.1 67.2

NTS[42] Graph modular No Panoramic 63.0 43.0

DGN (Ours) Graph modular Yes Single 83.2 65.3
TABLE II TABLE III

Results of Comparative Study in ProcTHOR-10K.

Results of Ablation Study in ProcTHOR-10K.

Method SR SPL Method SR SPL
Random 12.2 12.2 Random 12.2 12.2
TDVN[12] 18.85 2.57 DGN w/o EKG 16.81 12.9
TSGM[39] 35.71 33.66 DGN w/o IKG 59.32 33.8
DGN (Ours) 62.27 40.81 DGN 62.27 40.81
DGN w/ GT SemSeg 78.45 51.54

« Randomly Walking: The agent performs a uniformly
random action from the action space A at each timestep.

o Target-driven RL[12]: This baseline uses a deep
siamese actor-critic network with shared convolutional
networks to encode the current and target images. It
handles the explored regions implicitly and is trained
end-to-end via reinforcement learning.

e OVRL-V2[14]: This end-to-end method demonstrates
state-of-the-art performance in ImageGoal Navigation.
It employs ViT + LSTM for implicit environment per-
ception and is trained using DD-PPO[21].

o« TSGM[39]: This end-to-end method updates graph
memory through a Cross Graph Mixer and uses a
Memory Attention Module for online memory updates
in topological environments.

o NTS[42]: This is a modular method based on topology
awareness. It encodes images using ResNetl8 and up-
dates topological perception through a graph construc-
tion module, selecting sub-goals by a global policy and
taking actions by a local policy.

4) Result and Discussion: The quantitative results of the
comparative study in Gibson are shown in Table I. DGN
outperforms other methods in terms of SR, indicating its
strong generalization ability to adapt to different room lay-
outs and effectively reach the target.Additionally, DGN with
topological perception is higher in SPL compared to frontier
implicit perception end-to end methods. [14], suggesting that
topological perception provides a better understanding of the
environment, aiding the robot in exploring unknown areas.
However, the single-camera-relied DGN may be slightly less
perceptive in a single timestep compared to method using
panoramic cameras [39], but this sensor configuration has
advantages when deployed to different robot platforms and
real-world environments.

Our method was compared with baseline methods in
the ProcTHOR-10K dataset in Ai2THOR. Some methods
were not included in the table due to no access to open
source code or their inability to run in Ai2THOR. As

shown in Table II, the DGN outperforms other baseline
methods in new environments without fine-tuning. Notably,
methods that performed well in the Gibson dataset showed
significantly reduced performance in ProcTHOR-10K. This
is because the baseline methods rely firmly on features
like image characteristics and layout specific to the original
simulation environment, making it difficult to adapt to new
environments. The SPL of TDVN [12] even falls below
random exploration, as it struggles to adapt to complex room
changes and tends to get stuck. In contrast, our method’s
loosely coupled modular design allows it to flexibly adapt
to environmental changes and maintain high generalization
performance through online updates. The DGN outperforms
competing baselines by 26.56% in SR and 7.15% in SPL,
indicating that using semantic results as input for navigation
decision-making effectively avoids significant shifts between
training domain and evaluation domain, which are common
in end-to-end approaches.

5) Ablation Study: To understand the role and importance
of each module in DGN, we conducted the following abla-
tions on the ProcTHOR dataset:

« DGN w/o EKG: We replaced the EKG-provided ob-
ject correlation-based exploration prompts with random
exploration prompts.

o DGN w/o IKG: We navigated based on the object with
the highest relevance to the target in the image without
constructing the IKG and updating the EKG.

« DGN w/ GT SemSeg: We replace the instance per-
ception module in our framework with the ground-truth
semantic sensor in the simulator.

Table III illustrates the critical role of EKG and IKG in vi-
sual navigation tasks. DGN w/o EKG shows only a marginal
improvement in SPL over the Random baseline, suggesting
that exploration prompts of the EKG effectively guide the
robot towards the target, minimizing aimless wandering and
enhancing navigation performance. Although DGN w/o IKG
achieves significantly higher SR and SPL than Random, its
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performance remains below that of the DGN, due to its
inability to record and interpret explored areas. Furthermore,
as depicted in Fig. 3, in various multi-room environments, the
online update mechanism of the DGN mechanism effectively
bridges the gap between prior knowledge and the current
environment, enabling the robot to locate the target more
efficiently.

Additionally, there are still chances for our proposed
model to progress in performance. Compared to our method,
the DGN w/ GT SemSeg gains approximately 16% higher
SR and 11% higher SPL, mean the substantial impact of
instance-aware accuracy on overall performance. Since the
modular plug-and-play design of our method allows for
seamless integration of different algorithmic modules, inte-
grating some robust instance perception algorithms coud be
a promising solution as algorithm performance advance.

Table IV presents the evaluation of DGN performance
following the replacement of each module without fine-
tuning. Compared to the default module (row 1), using
lighter-weight recognition methods such as YOLOv10 [58]
(row 2) speed up the perception but may result in target
loss due to reduced recognition accuracy. DISK [59] (row
3) captures more detailed structural information, though it
increases computational burden. The use of the RRT [60]
algorithm (row 4) trades off path quality for path planning
speed. Our method supports flexible modular algorithm re-
placement based on the specific needs of environments and
embodiments, achieving complementary advantages.

TABLE IV

Comparison of DGN Module Configuration Performance.

Detector  Keypoint ~ Navigation SR SPL Time(ms)
YOLOvV8  SuperPoint ~ A-star 62.27 40.81 47.55
YOLOVIO SuperPoint  A-star 54.52 36.23 26.34
YOLOVS DISK A-star 58.97 36.59 73.44
YOLOvVS  SuperPoint RRT 60.07 35.46 34.23
TABLE V
Comparative Study Results on Real Robots.
Device TSGM [39] TDVN [12] DGN(Ours)
Run on 3090ti(ms) 275.37 187.84 52.18
Updates on 3090Ti True True True
Run on Jetson NX(ms) Failse 295.82 97.43
Update on Jetson NX Failse Failse True
Run on Raspberry Pi(ms) Failse 433.04 150.53
Updates on Raspberry Pi Failse Failse True

B. Real-World Experiments

We deployed the DGN and comparison baselines in real-
world tests across different hardware platforms to evaluate
their performance and parameter updating capabilities. To
assess algorithm robustness, we conducted tests on a robot
platform equipped with a Realsense D455 camera, using
three distinct hardware configurations: an x64 device with
an Intel Core i7-13700F CPU and GeForce RTX 3090 Ti
GPU, a Jetson NX, and a Raspberry Pi 5. Our method
demonstrates strong adaptability to cameras with varying
heights and configurations (see supplementary video for
details). As shown in Table V, our method is faster in
computation and better in platform compatibility compared
to other approaches. The method in [39], with its large
number of parameters set and high input data demands,
is challenging to deploy effectively on resource-constrained
devices. Although the method in [12] is simpler, its limits
on perception module results in lower operational efficiency
than our method. Unlike competing methods, our method
excels on resource-constrained platforms by selecting ap-
propriate algorithms based on hardware performance and
scenario requirements, enabling online updates of the prior
knowledge of environments, so there is no need for complex
retraining. Experimental results show that DGN operates
stably even on low-cost, low-power devices without CUDA
support, verifying excellent adaptability.

V. CONCLUSION AND FURTHER WORK

In this paper, we propose a knowledge-driven dual topo-
logical navigation framework that utilizes the EKG to pro-
vide navigation prompts and the IKG to record and update
the knowledge of explored areas. This framework employs
a modular plug-and-play design, supporting zero-fine-tuning
replacement of target recognition, keypoint extraction and
path planning algorithms, enhancing environmental adapt-
ability and being compatible with three robot platforms.
The experiments show that with topological perception and
modular design, the DGN can complete ImageNav tasks



using only RGBD data on resource-constrained devices.
However, there is still room for optimization in instance
recognition and smooth motion control. In the future, we
will develop more robust environmental perception and con-
tinuous navigation modules and expand adaptability to more
real-world robot platforms.
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